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Cost distributions in large combinatorial optimisation problems 

Neil Burgess and  M A Moore 
Department of Theoretical Physics, The University, Manchester M 1 3  9PL, U K  

Received 1 March 1989 

Abstract. We have examined the cost distribution of locally optimal solutions in certain 
combinatorial optimisation problems. This distribution is found to be peaked about a 
value characteristic of the algorithm involved, with a width that decreases with the system 
size N .  I t  is shown that the distribution of costs E is of the form exp(Ng(E))  and that 
g(E)  is self-averaging. Consequently, estimation of the optimal cost is best achieved by 
curve fitting to g(E) .  Possible forms for g ( e )  are proposed. 

1. Introduction 

Combinatorial optimisation problems have a long history of mathematical study. 
Recently, techniques borrowed from statistical physics have provided useful insights, 
e.g. [ 1-31. The difficulty in solving these problems is due to the size of the configuration 
space (which usually grows very rapidly with the number N of degrees of freedom of 
the system) and  to the conflicting nature of the constraints involved. These constraints 
tend to give rise to a large number of local minima in the cost functions for the problem. 
Thus the solution of minimum cost lies in a vast configuration space containing many 
local minima whose numbers often increase exponentially with N. 

In large systems, locating the globally optimal solution is impractical and only 
locally optimal solutions can be generated in a reasonable amount of computer time. 
However, in many practical applications a solution only has to be ‘good enough’; it 
does not have to be the best possible. Locally optimal solutions to a problem with 
respect to a given algorithm are attractors in the configuration space of the problem, 
under the dynamics of the algorithm. Where the cost function is actually the energy 
of the system we will refer to metastable states rather than locally optimal solutions. 
Associated with each attractor is a basin of attraction or  gathering bin of configurations 
for which the attractor is a fixed point under the dynamics of the algorithm. When 
an  algorithm is run from an  initial configuration the particular solution in which it 
terminates depends only on which gathering bin the initial configuration was in. 

We argue below that in large systems the distribution of locally optimal costs 
generated by an  algorithm will be very sharply peaked about a cost characteristic of 
the algorithm; running the algorithm from many different initial configurations will 
not usually give a solution significantly better than the result of one run. The running 
time of an  algorithm increases rapidly with the quality of the solutions it gives (many 
of these problems are ‘NP complete’ i.e. finding the globally optimal solution in general 
requires a number of computational steps which is an exponential of N ) .  Efficient 
estimation of the optimal cost is, however, possible by extrapolation from the distribu- 
tion of easier-to-generate locally optimal costs [4,5]. Here we look at the likely cost 
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distribution of !ocally optimal solutions, and how best to use it to extrapolate to the 
globally optimal cost. 

2. The shape of the cost distribution 

Let us consider the cost distributions in two typical examples of these problems: ( i )  
finding the ground-state energy of a short-range Ising spin glass, and ( i i )  the travelling 
salesman problem (TSP).  

Problem ( i )  involves minimising the Edwards-Anderson Hamiltonian [6] 

where the spins S, can be il, the exchange energies J,, are typically taken from a 
Gaussian distribution with zero mean and the sum is over nearest neighbours. A 
general set of moves for the dynamics of the system is to reverse the sign of up  to m 
neighbouring spins. A state energetically stable with respect to these dynamics is 
termed ‘m-spin flip’ metastable. We simulated a short-range Ising spin glass on a 
two-dimensional square lattice of side L for L = 10, 20,.  . . , 50  with periodic boundary 
conditions and  bonds J,, chosen randomly from a Gaussian distribution with mean 0 
and  variance 1. A single-spin flip metastable state was generated from a random initial 
state by sequentially reversing spins so as to lower the total energy until no further 
reduction was possible in this way. This was done from one hundred different initial 
spin configurations. We found that in these states the mean energy per spin E = 
- 1 . 0 7 ~ 0 . 0 4  (compared to the ground-state energy for which it is --1.3 [7]) and  is 
virtually independent of N. The standard deviation of the metastable state energy per 
spin SE = v (2’) - (E) ’  = (0.59 * 0.02) N-’  ’. 

Simulation of an  S K  spin glass (which has infinite-range interactions, so that the 
sum in ( 1 )  is over all pairs and the standard deviation of J,, is N-”?) by Henkel and  
Kinzel [8] shows the metastable states with respect to single-spin flips (at  zero tem- 
perature) to have similar behaviour with ( E )  - 0 . 9 2 ~ ~  and SE - N - ” 2  where E~ is the 
ground-state energy. 

Problem ( i i )  involves minimising the length of a closed path through N points (or  
‘cities’) i.e. minimising 

, = I  

with respect to P( i ) ,  which is a cyclic permutation of 1,2,  . . . , N giving the order in 
which cities are visited. I,, are the distances between cities i and  j. A general set of 
moves for the dynamics of the system is to swap up  to m intercity bonds in the tour 
for bonds not in the tour such that the tour is still closed. A tour that cannot be 
shortened by such a move is said to be m-optimal or ‘m-opt’ [9]. 

For the TSP with N cities scattered with uniform distribution on [O, l I d  the optimal 
path length 1 = C d N ‘ d - ’ J ’ d  *ith standard deviation 61 - N ‘ d - 2 ” ’ d  [ lo]  so that S l / l -  
N-’’2 where the averaging is over city positions. C, is a constant depending on the 
dimensionality of the problem. In two dimensions 0.765 

We simulated a TSP on a square with N cities for N = 100,120,. . . ,400. A 2-opt 
tour was generated from a random initial tour by sequentially swapping pairs of 
intercity bonds so as to reduce its length until no further reduction was possible. This 

C2 s 0.765 +4 /  N [ l l ] .  
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was done from one hundred different initial tours. We found that 1 = ( 0 . 8 2 l t 0 . 0 2 ) m  
and  61 = (0.25 lt0.04). 

Thus both in the spin glass and TSP problems we have 6 C / C  - l/m where C is 
the locally optimal cost. That is, the locally optimal costs become increasingly closely 
gathered about a cost typical of the algorithm as the size of the system increases. 

We can understand this behaviour if we suppose that the number of local minima 
N ,  grows exponentially in N, say N,  = exp a N  (this is true for single-spin flip metastable 
states in spin glasses [12-141 and for ‘reasonable’ paths in the TSP city where each city 
is connected to cities at most k minimal spacings away [ 11). Then we expect the energy 
distribution of metastable states to be given by N,(E) = exp( N h ( e ) ) .  Associated with 
each local minimum in the cost function is a ‘gathering bin’ of states attracted to the 
minimum under the dynamics of the particular algorithm. If the gathering bins were 
all the same size then the probability of an algorithm (started from a random configur- 
ation) terminating in a local minimum of cost e would be given by P( e )  = N,( e ) /  N,  = 
exp[N(  h ( e )  - a ) ] .  Since the gathering bins are not generally the same size then 

P( e )  = exp[ N (  h (  e )  -f( e i - (Y ) ]  

where the average fraction of configuration space in the gathering bin associated with 
a metastable state of energy E is exp(-Nf(e)).  

If g(E) = h ( e )  - f (e)  - a has a maximum at e ,  then to first approximation the 
probability distribution of the locally optimal costs will be 

P( E I = exp[ ~ ( g ( e ~ )  + tg”( e l  E - e l  )‘)I ( 2 )  

near to the peak at E ,  with g”(el)<O. Hence the spread of locally optimal costs 
obtained by running an  algorithm from random initial configurations is given by 

Thus in these types of problems the distribution of costs which are local minima 
under given algorithm dynamics will have a Gaussian-like peak of width N-”’ near 
to the characteristic cost e,  of the algorithm. Solutions that are locally optimal under 
certain algorithm dynamics tend to become fewer in number and lower in cost as a 
more powerful algorithm is used (e.g. using 2-spin flip dynamics in spin glasses or 
3-opt dynamics for the TSP) [15]. 

Notice that the underlying shape of the distribution of metastable state energies is 
given by g(e)  = I n ( P ( & ) ) / N .  The fluctuations in the curve g ( e )  between different 
realisations of a problem will be much less than the fluctuations in the distribution of 
metastable states N,(E) (or P ( e )  itself) since N,(E) grows like exp( N )  rather than N. 
We can see why this is with a simple example. Suppose the value of an  extensive 
variablef (i.e. one which grows like N )  as measured in samples of size N has Gaussian 
fluctuations of size V% from sample to sample, i.e. f= a N  + A, with 

N-I 2 *  

exp( -A2/  N )  
P(A)= J-&i dA. 

Then the fluctuations S g  = ((g’), -(g):)’” in a variable g = exp(f) are given by 

- exp[ N (  a + f ) ] .  

Although 6f - m; ln(6g) - N. Notice that (g), = exp(( f )A+ N / 2 ) .  
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It has been observed in statistical physics that the densities of extensive quantities 
(e.g. the ground-state energy per spin o r  the susceptibility per spin) tend to be 
‘self-averaging’ in large systems (i.e. their sample-to-sample fluctuation tends to zero 
as the sample size tends to infinity). A simple plausibility argument for this was given 
by Brout [ 151. A similar argument in the context of the energy and  number of metastable 
states in combinatorial optimisation problems is as follows. 

If a large system can be divided into k independent subsystems such that metastable 
states of the system corresponds to each subsystem being in a metastable state, then 
( a )  the metastable state energy E, is given by 

k 

E,= Ei 
, = I  

where E, is the energy of the ith subsystem metastable state, and  (b) the number of 
metastable states N,  is given by 

k k 
i.e. In( N,)  = In( N , )  

,=I 
N s = n  Nt 

,=I 

where N, is the number of metastable states in the ith subsystem. Thus, if E, and N, 
are independent of El and N,, respectively ( J #  i )  the central limit theorem implies 
that (1/ N)((Ef) -(E,)2)”2 - N-1’2 and (l/N)[((ln(Ny))2)-(ln(Ns))2]”2- N-”* as 
k -$ CO (if the distributions of E, and NI have finite moments). Generally such subsystems 
are not truly independent of their neighbours because of boundary effects. 

We thus expect that the distribution g ( & )  = In(P(E)) /  N will have the typical shape 
(In(P(E)))/N for different examples of the same problem (e.g. for a spin glass with 
different sets of exchange energies {J, ,}  drawn from the same distribution), up to 
fluctuations which tend to zero as N + cc. 

3. Estimating the optimal cost by curve fitting 

We see from the above that the most efficient way of producing a good solution to a 
large combinatorial optimisation problem is with a few runs of the best algorithm 
possible in the available computer time; see also [ 171. Judging the quality of a solution 
requires an  estimation of the optimal cost. This can be done by running a relatively 
fast algorithm from many different initial configurations to generate locally minimum 
costs. If one assumes a form for the distribution P( E )  of these costs then this theoretical 
form can be fitted to the data on the frequency of metastable state energies so as to 
extrapolate to the globally minimum cost E ~ .  

This has been done for the TSP by Golden [ 181, see also [4,5, 191, on the assumption 
that locally optimal costs e will have a ‘Weibull’ distribution i.e. 

P(&)=-(-)‘-’ c E - 1  exp[ -(7)‘] 
b b  

or  
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for E 3 a 3 0, b > 0, c 3 0. The three parameters a, b and c are estimated so as to best 
fit the { E }  generated by some quick algorithm run from random initial paths. Finding 
the best fit can be done several ways [4,5,  181, the simplest being to determine b and 
c for a range of values of a by a least-squares fit on In{-ln[l -F(E') ]}=  
c In( E '  - a )  - c In( b )  where F (  E ' )  is the experimentally generated cumulative distribu- 
tion of energies. Then the value of a is an estimate of the optimal solution, and the 
interval [ v - b, b ]  contains the optimal cost with an estimated probability of 1 - exp( --s) 
[4], where s locally optimal path lengths were generated and v was the shortest one. 

The Weibull distribution is intuitively plausible since if independent samples of 
size m are taken from a continuous parent population bounded below by a, then the 
distribution of the smallest member of a sample approaches that of equation ( 3 )  (for 
some b and c)  as m + CG [ 181. This is the third of the three limiting forms of the 
distribution of extreme values derived by Fisher and Tippett [20]. Because each locally 
optimal cost xi is implicitly the smallest of the m costs in the ith basin of attraction 
we might expect the distribution of x, to be Weibull. 

However, the actual distributions of metastable state energies have been calculated 
for spin glasses and they are not Weibull distributions. 

The curve given by (In(N,(&)))/N over the full range of E has been found for 
single-spin flip metastable states in a spin glass in one dimension [21] (see 0 4, and 
also [ 151 for multi-spin flip metastable states), two dimensions [22] (numerically) and 
in the SK model [12]. In the region of interest (i.e. for E near to E ~ )  N , (E)  for one-, 
two- and three-dimensional spin glasses has the form (Bray and Moore [ 131) 

N , ( E ) - - ~ ~ P [ N P ( E - - ~ ) " I  (4) 
where a = for d = 1 .  P ( E )  varies from N , ( E ) / N ,  due to the energy dependence of 
the average size of a gathering bin associated with a local minimum of a particular 
energy. In the one-dimensional case there is no such energy dependence [21] so that 
N , ( & ) / N ,  = P ( E ) .  Also, for the TSP in d dimensions, an argument in [17]  implies that 
N,(E)  might also have the form of expression (4) with a = d / ( d  - 1 )  for E near E, , .  

The weak point in the intuitive argument for the Weibull distribution is the 
assumption that each metastable state energy is implicitly the lowest of m independent 
samples from the population of possible energies (meaning the energies of the m 
configurations in that gathering bin). The energies of the configurations in a particular 
gathering bin will not be independent, and in general m varies from bin to bin. 

Golden and co-authors [4,5,  18, 191 did obtain encouraging results for the TSP. I t  
may be that doing a good job with a three-parameter fit using any curve of roughly 
the right shape will give reasonable results, or that in the TSP the path lengths in a 
gathering bin happen to be more like a random sample of possible lengths than in the 
spin glass. 

This leaves us with the problem of what curve to fit to the locally minimum costs 
generated by a quick algorithm. Obviously in problems where the underlying probabil- 
ity distribution of metastable states ( g ( E )  in equation (2)) has been calculated then 
this distribution (rather than, e.g., a Weibull distribution) is the one to try to fit to the 
experimental data (for any reasonable number of data points). Where there has been 
no such calculation a curve such as P (  E - E,,)" for E near E,, (from equation (4)) should 
be fitted to the data on In(P(&))/N (or their cumulative equivalents can be used if 
more convenient). Then, if this distribution is 'self-averaging', a good fit for one 
realisation of the problem (e.g. one set {J) , }  for the spin glass) will also fit for other 
realisations of the problem up to an error that tends to zero as the size of the system 
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N tends to infinity. Consequently, estimation of the globally optimal cost .so in large 
systems by this method in many realisations of a problem would require only small 
corrections to the parameters (e.g. (Y and p )  once the curve In(P(E))/N had been 
fitted for one realisation. 

It is also possible to use the knowledge of the distribution taken by the smallest 
element of a sample as follows: if the metastable state energies generated by some 
algorithm are put into batches of size m then the probability distribution P,( E )  of the 
lowest energy E from each batch will be  [I31 

m - l  m - I  

P , , ( , i = m P ( e ) ( ] F x  P ( x ) d x )  = m P ( & ) ( L - J i  P ( x ) d s )  

If the lowest energy e per batch is near enough to e,, and P ( E )  - p ( s  - E ~ ) ' - ' ,  say, 
where P( E )  is the distribution of metastable-state energies. 

then we recover the Weibull distribution 

as m + W. So that in the Weibull distributon (3) we know that the parameter b - 
( m / ( c -  1))'". 

More accurately for the spin glass (i.e. for a larger range of E ) ,  we know that 
P ( e ) - e x p [ P N ( s  - E ~ ) " ]  for some a ,  p so that 

P e ( e ) +  m e x p [ P N ( e - e , , ) " - m l ( ~ ) ]  

where 

I(&) = exp[pN(x-e0 )" ]  d x - e x p ( P N ( e  5: 
for large n. 

From our  earlier argument we see that a more powerful algorithm must be used 
as the size of the problem increases to achieve low enough metastable-state energies, 
whatever fitting method is used. 

4. Example problem: the one-dimensional king spin glass 

The one-dimensional short-range Ising spin glass, i.e. 

has the characteristic large configuration space and  exponential number of degrees of 
freedom of many harder combinatorial optimisation problems, without being too hard 
to solve analytically. Also, since the size of the basins of attraction under single-spin 
flips d o  not vary with the energy of the attractor [21], the probability of locating a 
metastable state of energy E from a random initial spin configuration is P ( E )  = 
N , ( e ) / N , .  We can demonstrate the difference in the distribution of N,(E)  and g ( E )  = 
In( N,( E ) ) /  N from equation ( 2 ) .  The typical distribution ((In N,( E I), / N) has been 
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calculated by Ettalaie and Moore [21] (see figure 1). We will now calculate ( N , ( E ) ) ~  
for comparison. 

In a single-spin flip metastable state each spin is aligned with the local field 
h, = J,-lSt-l + J,S,+,  so that A ,  = h,S, 2 0 for all i. The metastable-state energy per spin 
E = -( 1 / 2 N )  IJ,. Hence 

Using the integral representation of the delta function and averaging over the J,  (which 
leaves no S, dependence so that we can take the trace) gives 

exp[-A,u -x ,A ,  +f(x,+x,+,) ' ] .  

Putting 

* dt, 
exp[f(x, + x,, I 12]  = exp[ -f t f  + (x, + x, ,~)  t ,  ] 

and recognising the xi integrals as delta functions, gives for the right-hand side of (6) 

I I 

E 

Figure 1. Plots of ( l / N ) l n ( N , ( ~ ) ) ,  (broken curve) and ( l / N ) ( l n  N , ( E ) ) ,  (full  curve) 
against E for the one-dimensional Ising spin glass. 
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Making the transformation y, = E;= ,  (-l)'*'A,, i.e. A ,  = y ,  +y ,+ , ,  for which the Jacobian 
is unity, gives 

X 

xexp(-2y1u -fy:) I-:,, dy,. . . [ - y \ - l  d y ,  exp( -2y,u - $y$) .  

To solve equation ( 7 )  for (N,(  E)), we let 

gl(Y) = 1 

then as j + CC, g,(y) + g ( y ) ,  where 

which is equivalent to the differential equation 

with boundary conditions 

Hence, for large N, equation ( 7 )  becomes 

( 7 )  

where gmax(y) is the solution of equation (10) with the largest eigenvalue A m a x (  U). 
We can solve equation (10) exactly if we put U = 0. This corresponds to removing 

the constraint on the energy of a metastable state in equation ( 5 )  so that equation (1 1) 
with U = 0 gives the average number of metastable states 

If we make the change of variables 

in equation (10) with U = 0, then we get 

____ g ( z  = 0) = o  - A  
g'(z = ;) 

which has solution g , ( y )  = A sin(z(y)/A,,), A,, = ( - l ) " / [ (n  +$)TI, for n =0,  1 , .  . . . 
Thus equation (12) gives the average number of metastable states as 

for large N, in agreement with [23]. 
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To calculate ( N J E ) ) ~  we numerically calculate A,,,( U )  from equation (10) with 
U # 0 by an iterative procedure which started from the U = 0 solution. Finally, equation 
(11) tells us that for large N 

(N,(E)), = Iiz %exp{-N[Zue -1n(2Amax(u))]}. (13) -,= 27T1 

The integral (13) is evaluated by steepest descent. 
The results are displayed in figure (1). The ‘average’ In( Ns( E)) , /  N curve is wider 

than the ‘typical’ curve (In N,( E)),/ N, and predicts the wrong ground-state energy per 
spin. In the ground state each bond contributes -IJ,I to the energy so that the average 
ground-state energy per spin is (E,), = ( -X,IJ , l ) , /  N = --= -0.798, in agreement 
with the typical curve exp((1n N,(E)),), whereas (N,(E)), = 1 for E = -0,113. That 
In( N,( E)), 2 (In( N,( E))), follows trivially from the inequality exp((x)) 6 (exp(x)). 
Unusual metastable state energies from rare J,  congfigurations are responsible for the 
atypical behaviour of ( N,(E)),.  

The peaks in the distributions also occur at slightly different energies; -0.686 for 
the typical curve and -0.671 for the average curve. Notice that a graph of ( Ns( E)), 
rather than the ( 1 / N )  ln(N,(E)), shown in figure 1 would be very sharply peaked 
about E , ,  with N , ( ~ ) - e x p ( N ( ~ - e ~ ) * )  near to E ~ .  The typical curve also has this 
behaviour, in agreement with our earlier prediction for P ( E )  in equation (2). The 
behaviour of the typical curve near to is given by (In( N,(E))),/ N = 1.1456(& - E,)”’ 

[15], in agreement with equation (4). The peak in the average curve corresponds to 
U = 0 in the steepest-descent calculation of (13), giving the average (total) number of 
metastable states to leading order. The height of the average curve at the peak is 
ln(4/.rr), i.e. (N,) - exp(0.241 N ) ,  in agreement with [23], compared to the typical 
number of metastable states exp((ln( N,))) - exp(0.231 N )  [21,23,24]. 

The fluctuation with {Jt} of both the typical and the average number of metastable 
states can be calculated using results from Derrida and Gardner [23]. They showed that 

1 
lim - In( NP), = In( p ( p  In 2)) 
N-at N 

Jexp(x)  - 1 
tan-’(Jexp(x) - I ) )  p ( x )  = 

so that the fluctuation SN, of N, (in the large-N limit) is given by 

(33 1 
N 
- InJ(N:), - ( N,); = 4 In - 

This can be viewed as an ‘error bar’ at the peak in the average distribution. 
By comparison, the fluctuation in In( N,) (in the large-N limit) is given by 

1 
N -J((1n(Ns))2), - MW);  
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since In (p (  p In 2 ) ) / p  = (In 2 ) / 3 .  That is, the typical number of metastable states 
is self-averaging. The same behaviour for the complete distribution In( N,( E ) ) /  N is 
expected. 

Consequently the curve (1/ N ) ( l n (  N,( E ) ) ) ~  will fit experimentally generated data 
on In( N , ( E ) ) /  N in systems specified by different sets { J , } ,  up  to fluctuations which 
tend to zero as N + W .  Thus, for large systems, a curve (e.g. ~ ( E - E ~ ) " ~  for E near 

which gives a good fit to the data on In( N,( E ) ) /  N for one realisation of the problem 
(i.e. one { J , } )  will also give a good fit for other realisations of the problem with only 
small corrections to the parameters ( p  and E, , ) .  Hence estimation of the ground-state 
energy by this method in many realisations of the problem would require very little 
effort once the curve In( N , ( E ) ) /  N had been found for one realisation. 

5. Conclusions 

We have studied the cost distribution of locally optimal solutions in the two-dimensional 
spin glass and  the TSP. We found that this distribution has a Gaussian-like peak about 
a value characteristic of the algorithm involved, with a width that decreases with N-' '2 .  
We expect this form of distribution to be general for combinatorial optimisation 
problems of this type. Thus, in the large-system limit an  algorithm run from different 
initial states will only sample states of a similar cost, the best of which will probably 
be worse than the result of the run of a more powerful algorithm. 

The form of the cost distribution P (  E )  indicates that estimation of the optimal cost 
from many locally optimal costs should be done by extrapolation of g (  E )  = In( P (  E ) ) /  N 
(or the equivalent for the cumulative distribution). This curve contains the typical 
behaviour of a problem and  may be sample indendent in the large-system limit (thus 
saving a lot of effort where many realisations of a problem need solving). We have 
indicated likely forms for g ( E )  for spin glasses and the TSP for E close to the globally 
optimal cost. 

Acknowledgments 

We should like to thank A J Bra), J L Shapiro, M Birse and  A J McKane for many 
helpful discussions. 

References 

[ I ]  Mezard M, Parisi G and Virasoro M A 1987 Spin Glass Theoryand Bevond (Singapore: World Scientific) 
[2] Fu Y T and Anderson P W 1986 J.  Phys. A: Math. Gen. 19 1605 
[3] Kirkpatrick S, Gelatt C D and Vecchi M P 1983 Science 220 671 
[4] Golden B L and Alt F B 1979 Nacal Res. Logist. Quart. 26 67 
[5] Golden B L 1978 Comm. Statist. B 7 361 
[6] Edwards S F and Anderson P W 1975 J. Phys. F: Met. Phys. 5 965 
[7] Morgenstern I and Binder K 1980 Phys. Rev. B 22 288 
[8] Henkel R D and Kinzel W 1987 J. Phys. A: Math. Gen. 20 L727 
[9] Lin S 1965 Bell. S>>st. Tech. J .  44 224.5 

[ lo]  Beardwood J ,  Halton J H and Hammersley J M 1959 Proc. Camb.  Phil. Soc. 55 299 
[ 1 I ]  Stein D 1977 Doctoral dissertation Harvard University 
[12] Bray A J and Moore M A 1980 J. Phys. C: Solid Stare Phys. 13 L469 



Cost distributions in optimisation problems 4609 

[I31 Bray A J and Moore M A 1987 &or. 1986 Heidelberg Coll. on Glassy Dynamics and Optimisation 

[ 141 Tanaka F and Edwards S F 1980 J. Phys. F: Met. Phys. 10 2769 

[15] Ettelaie R and Moore M A 1987 J. Physique 48 1255 
[16] Brout R 1959 Phys. Rev. 115 824 
[17] Moore M A 1987 Phys. Rev. Leu. 58 1703 
[18] Golden B L 1977 Networks 7 209 
[19] Golden B L and Stewart W R 1985 ne Travelling Salesman Problem ed E L Lawler, J K Lenstra, 

[20] Fisher R A and Tippett L H C 1928 R o c .  Camb.  Phil. Soc. 24 180 
[21] Ettelaie R and Moore M A 1985 J. Physique Lett. 46 L893 
[22] Masui S, Southern B W and Jacobs A E 1989 Phys. Rev. B to be published 
[23] Derrida B and Gardner E 1986 J. Physique 47 959 
[24] Li T 1981 Phys. Reo. B 24 6579 

(Lecture Notes in Physics 275) (Berlin: Springer) 

De Dominicis C, Gabay M, Garel T and Orland H 1980 J. Physique 41 933 

A H G Rinnooy Kan and D B Shmoys (New York: Wiley) p 244 


